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weak-coupling case this coincides more or less with 
the kinematical line position of the line in question, 
however in the case of strong coupling, a line g will 
split into two branches and each of these may be 
considerably displaced from the kinematical two- 
beam position near the three- (many-) beam condition 
(H¢ier, Zuo, Marthinsen & Spence, 1988). The largest 
differences between cases of opposite signs of the 
triplet phase seems to be for the former case where 
the two cases have a clear maximum or minimum 
near the kinematical three-beam condition. However, 
in the strong-coupling case relatively large quantita- 
tive differences may also be observed but the magni- 
tude of the differences and thus the possibility to 
distinguish cases of opposite triplet phases is strongly 
dependent on the thickness. 

However, it is difficult to find any simple rule as 
to which thicknesses give the largest differences. This 
is because the intensity difference in general is the 
result of the difference between several thickness- 
dependent terms in the intensity expression [(10)], 
each depending on the magnitude of a product of 
eigenvector components and a cosine term for which 
the argument is a sum of a t-dependent term and the 
phase of the product of eigenvector components in 
the prefactor. It is impossible to draw any general 
conclusions about which thicknesses maximize this 
complicated difference term. 

In general, the determination of the correct sign of 
a triplet phase has to be based on high-quality experi- 
ments and quantitative intensity recordings. To avoid 
thickness averaging, which may blur the intensity 
variations of interest, CBED patterns should be 
obtained from parallel-sided specimens or the area 
from which the patterns are obtained should be so 
small that possible thickness variations are negligible. 

Experiments should further be carded out at liquid- 
nitrogen temperature using a cooling holder to 
minimize thermal diffuse scattering. Finally, quantita- 
tive comparisons should preferentially be based on 
digitized energy-filtered intensity data. Instrumenta- 
tion for acquiring intensity data in this latter way are 
now under development and the use of such systems 
will increase the potential for quantitative CBED 
considerably in the future (see, for example, Spence, 
Mayer & Zuo, 1991; Marthinsen, Runde, Holmestad 
& H¢ier, 1991). 
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Abstract 

A simple relationship is reported defining the ratio 
of dynamical and kinematic values of the integrated 
reflectivity in absorbing single crystals in terms of the 

product /.~,~, where /zn is the linear absorption 
coefficient for depth measured along the normal to 
the diffracting crystal's surface and ~ is the extinction 
distance in a nonabsorbing crystal. This relationship 
is interpreted through comparison with existing 
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(albeit mathematically complicated) expressions for 
the dynamical reflectivity in the two limits of negli- 
gible absorption and very strong absorption. It is 
shown to be valid for intermediate values of/z,~: by 
comparison with calculated values of the integrated 
reflection from single-crystal CdTe using various 
wavelengths and (111)-type reflections. This relation- 
ship's usefulness is discussed in the analysis of 
dynamical diffraction experiments commonly 
employed in semiconductor materials characteriz- 
ation. 

Introduction 

It is well known that the integrated intensity of a 
Bragg reflection from a highly perfect crystal can 
differ considerably from that recorded from a struc- 
turally imperfect crystal of the same material. The 
diffraction process in imperfect crystals is described 
by the kinematic theory, whereas diffraction from 
perfect crystals is best described by the dynamical 
theory. The well defined difference in the value of 
the integrated reflection for perfect and imperfect 
crystals immediately suggests the utility of measuring 
this quantity as a nondestructive gauge of crystalline 
perfection (White, 1950). In the kinematic theory, it 
is assumed that the crystal is not structurally perfect 
over a distance sufficient to provide a coherent 
medium where the diffracted and incident X-ray 
wavefronts can dynamically couple with each other. 
The resulting expression for the integrated reflectivity 
for X-rays with wavelength A diffracting from a 
material with unit-cell volume Vc at the Bragg angle 
0B is given as (James, 1963) 

Rkin = (~r2lqbhl2/2X/x sin 20B)C 2 (1) 

with 

~h = ( reA 2/ ~rVc) Fh, (2) 

where re is the classical electron radius, /1, is the 
photoelectron absorption coefficient, Fh----Fhkt is the 
structure factor, C is the polarization factor and ~h 
denotes the hkl Fourier component of the electric 
susceptibility expanded over the crystal's reciprocal 
lattice. Note that in the above equation, as in all that 
will follow, the symmetric Bragg diffraction geometry 
is assumed so that the diffracting planes are con- 
sidered parallel to the crystal surface. Generalization 
from the symmetric case is straightforward, involving 
the multiplication of parameters by an average of the 
sines of the angles incident and diffracted X-rays 
make with the surface (see, for instance, Afans'ev & 
Perstnev, 1969; James, 1963). 

The dynamical theory of diffraction is invoked to 
describe the perfect-crystal case. In this theory, the 
effect of the periodic medium on the coupling of 
incident and diffracted X-rays is taken into consider- 

ation. The incident and diffracted wave fronts are 
considered as parts of a wave field existing in the 
crystal that interact with each other and the periodi- 
cally varying electrical susceptibility of the medium 
in such a way as to satisfy Maxwell's equations within 
the crystal. The resulting expression for integrated 
reflectivity has two forms depending on whether or 
not the absorption of the crystal is considered to be 
of appreciable magnitude. If one can neglect absorp- 
tion, the dynamical expression for the integrated 
Bragg reflection corresponding to (1) is give by James 
(1963) as 

Rdy.= (81~hl/3 sin 20B)C. (3) 

When absorption cannot be neglected, the simple 
expression (3) is no longer valid. The first theoreti- 
cally rigorous analytic expression for the integrated 
reflectivity from a crystal in which no assumptions 
were made about the magnitude of absorption was 
derived by Afanas'ev & Perstnev (1969). Earlier, an 
empirical relationship developed by Hirsch & 
Ramachandran (1949) was used quite successfully to 
describe the reflectivity of the absorbing perfect crys- 
tal. Although Hirsch & Ramachandran (1949) con- 
sidered only centrosymmetric structures, a generaliz- 
ation of the expression by Cole & Stemple (1962) 
encompassing noncentrosymmetric crystals is 

Rdy n : (1C@h,l/sin 20B)[(~r/4)(1 + I< z + 2s)/lgl 
+ exp {-  [ (1 - K2) 2 + 4p 2] 

x [[g[+ln (32/3"n')]}], (4) 

where 

p = [Re (qbhr) Re (@h,) + Im (@h,) Im (aSh,)]/I a hrl = 
(5) 

Note that the r and i in ~hr or ~hi reference 
whether the quantity is derived from summing the 
real or imaginary components of the atomic structure 
factors over the unit cell. Again, the above expression, 
though accurate, is empirical in nature. The relation- 
ship was developed by studying numerical integra- 
tions of calculated reflection profiles. The rigorous 
analytic expression for the integrated reflection 
derived by Afanas'ev & Perstnev (1969) is 

Rdy n - - - -  (8/3 sin 20B)lc hl(l hl/l  l) '/2 P(s, q), (6) 

where 

P(s, q ) = ( 1 - s 2 - 2 q 2 s 2 ) E ( k ) / k  

- (3 7r/4) s( 1 - 2q2s 2) 

+ ks2(1-q2)[3(1-q2sZ)II( -q2,  k) 

- ( 2 -  s 2 -  2q2s2)K (k)] (7) 
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and 

s = ~o,/[C[ [~h ~ l  ~/2, q = IcI IIm ('/~h ~)1/¢ 'o, ,  

k = (1 + s 2 -  s2q2) -1/2 (8) 

with 

{~h "~- ~)hr "Jr- it~hi (9) 

and K(k ) ,  E ( k )  and l I ( - q  2, k) are complete ellip- 
tical integrals of the first, second and third type. 
Clearly, in both the empirical and the analytical 
approach, the presence of appreciable absorption 
adds significant complexity to the expression for per- 
feet-crystal reflectivity. 

The empirical expression of Hirsch & Ramachan- 
dran (1949) (as modified by Cole & Stemple, 1962) 
agrees with the theoretically rigorous expression of 
Afans'ev & Perstnev (1969) to within 2% over a wide 
range of diffraction conditions that are typically 
encountered in a laboratory setting. Both expressions, 
however, are rather complicated equations involving 
many diffraction parameters. In addition, neither 
expression readily reveals the extent to which the 
difference between dynamical and kinematic reflec- 
tivity depends on the relative strengths of the attenu- 
ation mechanisms that characterize the two types of 
diffraction, namely dynamical extinction and photo- 
electric absorption. Hirsch & Ramachandran (1949) 
show that, when the absorption coefficient is much 
larger than the extinction coefficient, the dynamical 
integrated reflectivity from a perfect crystal 
approaches the kinematic reflectivity of an imperfect 
crystal. The asymptotic approach to the kinematic 
limit has been described by Wilkins (1978, 1980) in 
terms of a decrease to zero in the level of interaction 
between the incident and diffracted waves. This theo- 
retical treatment was a natural extension of the earlier 
work of Mathieson (1975, 1977) on extinction-free 
measurements with asymmetric reflections. Wilkins 
and Mathieson were most interested in examining 
geometric means for attaining this limit, such as 
increasing the degree of asymmetry of the Bragg 
reflection and reducing the thickness of a finite 
diffracting crystal. In the case of a symmetric reflec- 
tion from an infinitely thick crystal considered in the 
present work, this limit can be approached by reduc- 
ing the structure factor. All three approaches to the 
zero-level-of-interaction limit are manifested as a 
reduction in the extinction coefficient relative to the 
photoelectric absorption coefficient. 

As the extinction coefficient becomes larger than 
the absorption coefficient, the dynamical reflectivity 
becomes much less than that predicted in the kine- 
matic case and approaches the value predicted by 
(3). While the determination of structure factors is 
made most conveniently in the zero-level-of-interac- 
tion limit (Wilkins, 1978), an assessment of crystalline 
perfection should be made within a regime where 

strong dynamical interactions are expected. Under 
these conditions, a significant (or at least measurable) 
difference between the kinematic and dynamic reflec- 
tivities would be anticipated. An examination of the 
dependence of this difference as a function of the 
relative magnitudes of the attenuation mechanisms 
would thus be useful, particularly if it were to yield 
an expression for the ratio of the dynamic to kine- 
matic reflectivities in terms of parameters that are 
salient to investigators concerned with characterizing 
the perfection of single-crystal materials. 

The question of how perfect a crystal must be to 
require the dynamical theory to explain the diffraction 
process may be addressed by comparing the length 
over which the crystal has no structural defects (where 
'defect' is used to denote a disruption in the periodic- 
ity of the lattice) with ¢, the extinction distance from 
dynamical theory. The extinction distance is the 
length measured perpendicular to the crystal surface 
over which the intensity of the wave field is decreased 
by a factor of 1/e due to dynamical interference 
effects. If the distance between defects in the crystal 
is less than the extinction distance, dynamical equili- 
brium cannot be achieved in the crystal and the 
kinematic theory is sufficient to describe the resulting 
diffraction. The dynamical expression must be 
invoked, however, if the crystal is perfect over a length 
on the order of or greater than the extinction distance. 
The extinction distance for symmetric Bragg reflec- 
tions when absorption is negligible is given by (James, 
1963) 

~:= ~-Vc sin 0B/Chre]FhklF-~ll[ I/2. (10) 

The above discussion of the extinction distance 
suggests that it can be thought of as being inversely 
proportional to an attenuation coefficient, describing 
the exponential decay of intensity with depth 
traversed in the crystal in a manner analogous to the 
photoelectric absorption coefficient. The difference 
between the two coefficients lies in the mechanisms 
by which a decay in intensity occurs. Photoelectric 
absorption is a loss of energy from the wave field to 
the atoms of the crystal; this is expressed through/zn, 
the effective absorption coefficient normal to the sur- 
face in the symmetric Bragg geometry, which in turn 
can be expressed in terms of the imaginary part of 
the zeroth Fourier component of the electrical sus- 
ceptibility, q~oi: 

/z,, = /z /s in  = 2 l+o,I/A sin 0B. (11) 

On the other hand, dynamical extinction is a redis- 
tribution of energy within the wave field. Although 
both absorption and extinction contribute to ki, the 
imaginary component of the X-ray's wave vector in 
the material, they play different roles in determining 
the intensity of the Bragg reflection due to the different 
attenuation mechanisms they represent. Both 
mechanisms are manifested in the complex form of 
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the Fourier components of the electrical susceptibil- 
ity. The imaginary contribution representing photo- 
electric absorption arises from the imaginary com- 
ponents of the individual atomic structure factors, 
while that representing extinction owes much of its 
character to geometric factors. 

Examination of the above equation for the extinc- 
tion distance # together with (1) and (3) illuminates 
the role that the two attenuation mechanisms play in 
determining the ratio of dynamical to kinematic 
integrated reflection in the limiting case of small 
absorption. Note that the ratio of (3) to (1) is propor- 
tional to the product of the photoelectric absorption 
coefficient and the extinction distance,/z,~:. Consider- 
ation of the inverse relationship of ~: and the extinc- 
tion coefficient shows the above relationship to be 
nothing more than the physically intuitive statement 
that the ratio of dynamical to kinematic integrated 
reflectivity is proportional to the ratio of the attenu- 
ation mechanisms that characterize the two types of 
diffraction. In fact, equations (8) of Hirsch & 
Ramachandran (1949) and (14) of Afanas'ev & 
Perstnev (1969) are simple expressions that depend 
solely on parameters that are proportional to /z,~. 
This/z,s c dependence is expressed through Hirsch & 
Ramachandran's variable g in our equation (4) and 
through Afanas'ev & Perstnev's variable s in our 
equation (7). These expressions, although simple, are 
only valid in the limit of small ~,~. 

Hence, when absorption is no longer negligible, 
the more complicated expressions in (4) or (6) above 
must be invoked to describe the dynamical reflectivity. 
By parameterizing the ratio of reflectivities in terms 
of/z,~:, we find that a reasonably accurate prediction 
of the integrated reflectivity over the entire range of 
/z,~ is obtained without reference to the complex 
relationship between materials parameters evident in 
(4) or (7). The starting point for simplifying the above 
expressions is examining the behavior of the ratio in 
the limits of large and small/z.~. In the limit of strong 
absorption and small extinction distance, the reflec- 
tivity predicted by the dynamical theory approaches 
that predicted by the kinematic theory, 

lim Rdyn/Rki n = 1. (12) 

When absorption is small in comparison with 
extinction, the expression for dynamical reflectivity 
approaches that of James (1963) given above in (3), 
which leads to the previously mentioned linear depen- 
dence of the ratio of reflectivities on /Zh~ c, 

lim Rdyn/Rkin=(16/37r2)tZn~. (13) 
p-,,~0 

In the absorption/extinction regime where (3) is 
valid, i.e. when /x,~:<0.3, the expansion of the 
exponential function in terms of its linear leading 
term is accurate within 2%. The behavior of the 

relationship in the two limits can then be accounted 
for within 1% accuracy by the simple function 

Rayn/Rkin'--" 1 - e x p  [(-'16/37rE)p.n~:]. (14) 

Application of (14) to CdTe 

To check the validity of (14), the reflectivities in the 
dynamical and kinematic limit were calculated for 
various ( l l l ) - type symmetric reflections and 
wavelengths using (1) and (6). Fig. 1 plots the ratio 
of dynamical to kinematic reflectivity (Rdyn/Rkin) 
against/x,,s c for a series of symmetric (111)-type Br~gg 
reflections from CdTe. The solid line in the figure is 
generated by (14). The data points in the figure were 
calculated using the dynamical reflectivity as calcu- 
lated by use of equation (6) of Afanas'ev & Perstnev 
(1969). The specific diffraction conditions that were 
used in the calculation of the reflectivities are tabu- 
lated in Table 1. The data in the table were calculated 
using atomic scattering factors and photoelectric 
absorption coefficients taken from International 
Tables for X-ray Crystallography (1974) and corrected 
for temperature using Debye coefficients measured 
by Horning& Staudenmann (1987). The reflectivity 
for both tr- ( C =  1) and 17"- (C- -cos20 )  polarized 
X-rays were calculated in each diffraction condition. 
The wavelengths considered were those available 
from the Bremsstrahlung spectrum of a typical labora- 
tory X-ray source such as a rotating-anode generator 
capable of operating at 60 keV with a Cu target. The 
existence of weak quasiforbidden (111)-type reflec- 
tions in the sphalerite structures was utilized in con- 
junction with the different wavelengths to vary the 
dimensionless quantity/x,~ over two orders of magni- 
tude from 0.03 to 60. Even over this wide range of 
/z,,~: the rather complicated equations yield a physi- 
cally intuitive relationship between the reflectivities 
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Fig. 1. Comparison of the reflectivity ratios Rdyn/Rki n calculated 
according to (14) (solid line) with those calculated according to 
Afanas'ev & Perstnev (1969) (dots). 
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Table 1. Diffraction conditions corrresponding to the 
calculated data in Fig. 1 

/z 

Izn~ (hki) A (•) C (cm - l )  ~ (ixm) Rki n Rdy n 

0.31 (333) 0.51 1.00 72 9.00 4.57E-05 6.93E-06 
0.34 (333) 0.51 0.92 72 9.83 3.83E-05 6.28E-06 
0.68 (444) 0.77 1.00 232 12.00 2.57E-05 7.59E-06 
0.93 (555) 0.62 1.00 126 30.42 5.93E-06 2.26E-06 
1.02 (444) 0.77 0.66 232 18.17 1.12E-05 4.52E-06 
1.12 (333) 1.03 1.00 618 8.88 2.81E-05 1.18E-05 
1.18 ( l l l )  1.54 1.00 1480 1.65 1.99E-04 9.27E-05 
1.20 (444) 0.39 1.00 214 11.56 7.08E-06 3.24E-06 
1.29 ( l l l )  1.54 0.92 1480 1.80 1.67E-04 8.23E-05 
1.31 (444) 0.39 0.92 214 12.64 5.93E-06 2.87E-06 
1.41 (555) 0.62 0.66 126 46.05 2.59E-06 1.31E-06 
1.69 (333) 1.03 0.66 518 13.45 1.23E -05 6.70E -06 
1.81 (555) 0.31 1.00 123 30.29 1.43E-06 8.50E-07 
1.98 (555) 0.31 0.92 123 33.10 1.20E-06 7.47E-07 
2.11 (444) 1.54 1.00 1480 11.73 2.71E-05 1.77E-05 
2.11 (333) 1.54 1.00 1480 8.82 2.60E-05 1.61E-05 
3.95 (777) 0.44 1.00 155 1 0 5 . 0 0  2.88E-07 2.74E-07 
3.95 (888) 0.77 1.00 232 1 4 0 . 4 0  6.04E -07 4.92E -07 
4.09 (666) 0.51 1.00 72 2 3 3 . 9 0  1.45E-07 1.18E-07 
4.28 (999) 0.51 1.00 72 3 6 7 . 6 0  1.02E-07 8.61E-08 
5.87 (222) 0.77 1.00 232 52.11 6.35E-07 5.69E-07 
5.89 (444) 1.54 0.36 1480 32.77 3.48E-06 3.14E-06 
5.98 (777) 0.44 0.66 155 1 5 8 . 9 0  1.25E-07 1.32E-07 
6.19 (666) 0.51 0.66 72 3 5 4 . 1 0  6.30E-08 5.68E-08 
6.41 (222) 0.77 0.92 232 56.95 5.32E - 07 4.84E - 07 
6.71 (888) 0.39 1.00 214 1 2 9 . 2 0  122E-07 1.12E-07 
8.57 (666) 0.77 1.00 232 2 2 8 . 4 0  1.23E-07 1.17E-07 
8.94 (333) 1.54 0.24 1480 37.34 1.45E-06 1.32E-06 

10.16 (888) 0.39 0.66 214 1 9 5 . 6 0  5.32E-08 5.11E-08 
11.04 (888 )  0 .77 0 .36 232 392 .20  7 .74E - 08 7 .47E  - 08 

13.92 (666) 1.03 1.00 518 2 2 1 . 4 0  1.46E-07 1.43E-07 
17.30 (222) 1.54 1.00 1480 48.16 5.00E-07 4.95E-07 
18.14 (999) 0.51 0.24 72 1557.00 5.70E-0.9 5.70E-09 
20.41 (10,10,10) 0.62 1.00 126 1335.00 9.91E-09 9.80E-09 
26.20 (222) 1.54 0.66 1480 72.92 2.18E-07 2.17E-07 
36.30 (666) 0.77 0.24 232 9 6 7 . 0 0  6.88E-09 6.86E-09 
38.87 (666) 1.03 0.36 518 6 1 8 . 4 0  1.87E-08 1.86E-08 
57.00 (10,10,10) 0.62 0.36 126 3 7 2 8 . 0  1.27E- 09 1.27E- 09 

and the parameter that describes the relative strength 
of their attenuation mechanisms. 

Although (14) was derived only by considering the 
limits of the diffracting behavior without reference to 
any materials constants except /z.~:, it predicts the 
reflectivity with an error of no greater than 9% in the 
cases considered. The difference between the two 
expressions is plotted against /z.~: in Fig. 2. The 
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Fig. 2. Relative difference between the reflectivity ratios illustrated 
in Fig. 1. 

approximation is considerably better than 9% in the 
limits of large and small/x,s ¢ and, for many purposes, 
the accuracy in the intermediate regime may be accep- 
table in light of the relationship's computational 
expediency and physical intuitiveness. Note that this 
difference varies systematically with/x,s ¢, suggesting 
that additional refinement would yield even better 
agreement with the rigorous theoretical treatment of 
Afans'ev & Perstnev (1969). However, there is no 
need for a more accurate interpolation formula than 
that which already exists. The present relationship is 
intended rather to illustrate the strength of the depen- 
dence of the reflectivity ratio on the ratio of attenu- 
ation coefficients. 

A natural extension of this work would be to con- 
sider different families of reflections (i.e. (100)- and 
(ll0)-type Bragg reflections) and different materials 
systems in the examination of the functional form of 
the differences plotted in Fig. 2. Since diffraction 
geometries were not drawn upon in deriving (14), it 
is not expected that the relationship would change in 
a qualitative sense. Investigations of these types 
would rather serve as a useful framework in which 
to understand the physical source of those refinements 
whose need is indicated by Fig. 2. 

D i s c u s s i o n  

The accuracy of the above expression in predicting 
the dynamical reflectivity of the crystal is remarkable 
when the gross simplifications that were made in (14) 
are taken into consideration. Indeed, the complicated 
form of the expressions of Hirsch & Ramachandran 
(1949) or Afanas'ev & Perstnev (1969) are necessary 
if a higher degree of accuracy is required. The relative 
success of an expression such as the one presented 
here effectively exhibits the overwhelming depen- 
dence of the reflectivity ratio on/z,~ as compared to 
the other parameters in the former equations. 

The usefulness of a simple relation such as that in 
(14) to the experimentalist who wishes to gauge the 
perfection of crystalline materials by reflectivity 
measurements deserves further discussion. For 
example, the full width at half-maximum (FWHM) 
of a double-crystal X-ray rocking curve is a figure of 
merit used to assess the perfection of a crystal. Inspec- 
tion of the relationship derived above in (14) suggests 
an avenue to address two major concerns in this 
method of characterizing defective single crystals: (1) 
how sensitive are the diffraction conditions to crystal- 
line imperfection and (2) is the broadening of the 
peak due to the presence of a statistical distribution 
of defects dense enough to make the crystal behave 
kinematically or is it due to the presence of large 
dynamically diffracting perfect regions in the crystal 
that are slightly misoriented with respect to each 
other? 
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The first question is addressed by calculating the 
product /zns ¢ for the material under a certain set of 
diffraction conditions. Note that in Fig. 1 the ratio 
of dynamical to kinematic integrated reflectivity 
approaches unit for large/zns¢: the larger the product, 
the less sensitive the measurement is to crystalline 
imperfection. Although it is the integrated reflection 
and not the shape of the peak that is the dependent  
quantity in this study, the crystallographer would be 
prudent in choosing diffraction conditions with as 
small a /zns ¢ as is practical when assessing the 
material 's perfection with X-ray rocking curves. 

The second concern is addressed by measuring the 
integrated reflectivity of the rocking curve as well as 
its shape. If the crystal consists of large (with respect 
to the extinction distance) perfect regions, the 
integrated intensity will be that predicted by the 
dynamical theory instead of the kinematic theory. 
Although Zachariasen's (1967) treatment of 
integrated reflectivity from defective crystals in prin- 
ciple allows a more detailed analysis, it presupposes 
that the angular misorientations of perfect-crystal 
regions can be described by a Gaussian distribution 
and that absorption effects are not large. It has been 
shown that many materials do not exhibit a Gaussian 
distribution of misorientations of perfect-crystal 
regions (Schneider, 1980). In addition, in a highly 
absorbing material such as CdTe, it is quite possible 
that under normal laboratory experimental condi- 
tions the assumption of small absorption effects may 
also be incorrect. In a set of experiments published 
elsewhere (Moran & Matyi, 1991), the authors study 
two crystals of CdTe with etch-pit densities differing 
by two orders of magnitude. Both had approximately 
the same integrated reflectivity (indicative of dynami- 
cal diffraction); however, the FWHM of double- 
crystal rocking curves from the two CdTe samples 
were significantly different. The explanation for this 
behavior, that defects were in both cases confined to 
boundaries betwen large structurally perfect regions, 
was confirmed via X-ray topography. The integrated 
reflectivity, interpreted within the framework of the 
above relation, was thus found to be a useful quantity 

for understanding the shape of the rocking curve in 
terms of the sample's defect structure. 

Concluding remarks 

A relationship between the ratio of dynamical to 
kinematic integrated reflectivity and the product of 
two salient diffraction parameters, the photoelectric 
absorption coefficient and the extinction distance, has 
been developed. This relationship is a computa- 
tionally expedient approximation to the theoretically 
rigorous expression derived by Afanas'ev & Perstnev 
(1969). In the specific case of(111) CdTe, the approxi- 
mation has been shown to agree to within 9% over a 
wide range of diffraction conditions. The success of 
this simple approximation arises from the strong 
dependence of the ratio of dynamic to kinetmatic 
reflectivities on the relative strengths of the attenu- 
ation mechanisms that characteize each diffraction 
process. 

This work was supported in part by National 
Science Foundation Grant  no. DMR-8907372. 
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